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The spatiotemporal instability of a nonlinear wave is studied by applying impulse-response analysis.
The time-asymptotic Green function is obtained analytically for both modulationally stable and unstable
cases. The conditions for absolute and convective instability are found analytically, as is the frequency
region for amplification and the spatial and temporal growth rates.

PACS number(s): 42.81.Dp, 52.35.Mw, 42.65.Ky

I. INTRODUCTION

The nonlinear Schrodinger equation (NSE) is widely
used to describe nonlinear dispersive wave propagation
occurring in many branches of physics and engineering,
such as plasma physics, nonlinear optics, and fluids dy-
namics. One of the prominent features associated with
the NSE is the existence of modulational instability (MI),
which causes small modulations of a plane wave propaga-
ting in a dispersive Kerr medium to grow exponentially.
For a tutorial introduction to modulational instabilities
and a short bibliography of original papers, see Ref. [1].
Longer bibliographies can be found in Refs. [2-4].

A fundamental characterization for any unstable (or
stable) dispersive system is the asymptotic spatiotemporal
behavior of a small localized perturbation. Such an
asymptotic impulse-response study can provide much im-
portant information, including the classification of the in-
stability as convective or absolute and the differentiation
between evanescent and amplified waves. In fact, the
asymptotic impulse-response study has been performed
on most common instabilities in both plasmas and fluids,
and the results can be found in standard textbooks [5-8].
However, for the important case of a nonlinear dispersive
wave, this aspect of study was only partially done [1,9].
This paper aims to fill the gap in the literature by analyti-
cally studying the impulse response of a nonlinear plane
wave in a dispersive Kerr medium. Some features per-
tinent to such a system as revealed by our impulse-
response study are discussed.

II. IMPULSE RESPONSE
The NSE can be written as [1]
dpa=—v;0,a—ipd a+illal’a , (1)

where a is the complex field, x’ and ¢’ are the spatial and
temporal coordinates, v, is the group velocity, u is the
dispersion coefficient, and y is the nonlinear coefficient.
Equation (1) has a  plane-wave  solution
a,(x,t)=a, exp(iAajt), where a, is a complex constant
representing the amplitude and phase of the plane wave.
Without loss of generality, we assume a, to be a real posi-
tive quantity since its phase can always be canceled by a
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time translation. We will also assume A is positive since
the discussion for the negative case is quite similar. If we
introduce the normalizations 4 =a /ay, x =x'ayV'A/|ul,
t =t'}»a5, and v, =vg' /\/a(z,kl,ul, Eq. (1) can be written in
the normalized form

9, A=—v,0,A—icd:, A+il4]*4, 2)

and the plane-wave solution becomes 4,=exp(it). We
have used o =sgn(u) to simplify the notation.

The evolution of the perturbative field is governed by
Eq. (2) linearized around the plane-wave solution. Using
A=(1+8A4)exp(it) in Eq. (2) and linearizing for § 4, we
obtain

8,64+v,0x84+i0d2,84—i8A—i8A4*=0. (3)

For the impulse-response analysis of the linearized
equation, we need to solve the initial value problem of

9,64 +0,0,84+i009%,8A4—i8A—i8A*=S(1)8(x),
@)

with 8 4(x,#)=0 for ¢t <0, where S(#)8(x) is the point
source of the perturbation. Equation (4) is readily solved
by applying Fourier and Laplace transforms in x and ¢.
The result is

i(—o+kv,—ok?—1)5 4 (w,k)
—i[8A(—w*, —k)]*=S(0). (&)

Since the above equation holds for arbitrary w and k, we
take its complex conjugate and replace » and k with
—o* and —k, respectively:

—i(0—kv,—ok?—=1)[8 A(—0*, —k)]*
+i8A(w,k)=[S(—ws)]* . (6
Using Egs. (5) and (6), we obtain the solution
_ —v,k—0ok?—1)S(0)—[S(—w*)]*
5 (k) —i ek Z o Z DS(0) 7 [S(~e)]
(0—v k) —ok*(1+0k?)

Its inverse transform is given by
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dk do —iot+ikxg 4
=|—| =— A (w,k) , 8
8AG,n=[—[ e (@,k) (8)
where the integration paths of k and w are the real axis
and Landau contour (for the inverse Laplace transform,
see [6]), respectively.

III. ASYMPTOTIC PULSE EVOLUTION

We first consider S(¢)=c8(¢), where c¢ is generally a
complex constant. In such a case, the Green function ob-
tained from Eq. (8) corresponds to the evolution of a §
pulsed perturbation. The evolution of a general pulse can
be studied in terms of its convolution. For simplicity, we
assume ¢ =1 so that S(w)=1. We concern ourselves
with the asymptotic spatiotemporal behavior of the
J
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Green function. Thus we assume ¢ is very large and work
with a spatial coordinate normalized to ¢, i.e., v =x /¢. In
such a limit, the integrations in Eq. (8) can be carried out
approximately. There are two equivalent approaches.
Basically, the first one is to conceptually integrate k first
and approximate the final integration of w by the contri-
butions from its branch points in the integrand. The
second one is to integrate w first and approximate the
final integration of k by the contributions from its saddle
points in the exponentials (i.e., by steepest descent in-
tegration). We adopt the second approach here. After
carrying out the integration in Eq. (8) with respect to
by summation of its simple poles at

o=v,ktkV'k*+20 9)
in Eq. (7), we have

8A(vt,t)=f%exp[ikv't] [explitkV k2+205+exp(—itk\/k2+20)]/2

Vk+20
+o 2k

where v'=v —v,. Equation (9) is the dispersion relation.
It indicates that the system is stable or unstable for
sgn(u) <0 or sgn(u)>0 [1].

Equation (10) can be decomposed as the summation of
four exponential integrals so that each integral can be
carried out by the saddle point method for large . To
realize the decomposition, we need an infinitesimal defor-
mation of the integration path around k =0, i.e., along
an infinitesimal semicircle above (below) k =0. This does
not change the value of the integration in Eq. (10) since
k =0 is an analytic point (removable singularity) of the
total integrand, but it does make all four exponential in-
tegrals individually well defined. It is evident from Eq.
(10) that £k =0 now becomes a simple pole for two of the
four integrands. To evaluate each of the four integrals
individually, we need to further deform their integration
paths to reach their respective steepest descent paths. On
some occasions, the path will come across the simple pole
in the deformation process. In such cases, the asymptotic
integral value is the contribution from the saddle point
and the pole. In the following, however, we will not ex-
plicitly decompose Eq. (10) and perform the above pro-
cedure. Instead, we only give the final results and con-
centrate on the physical picture.

We first consider the stable case sgn(u)>0. Then the
time dependence of the contributions from the saddle
points of kv'tk V'k2+2 in Eq. (10) normally has a decay
factor 1/V't (or 1/t!/3 if the group velocity dispersion,
i.e., the second order derivative of kv'*k 1/k2+2, is also
zero at the saddle point) multiplied by an oscillatory or
an exponentially decaying factor [10]. This is expected of
an ordinary stable dispersive system, where an initial per-
turbation tends to disperse and vanish in the space-time
domain. However, the simple pole contribution at k =0
in the second term in Eq. (10) should also be considered.
It actually gives the dominant contribution for large t.

lexplitk V' k?+20)—exp(—itk V' k*+20)] | ,

(10)

[

This effect is different from the ordinary stable dispersive
system. As long as v'#V'2, the saddle points and the
pole k =0 are separated. It turns out that the pole con-
tribution can be obtained by the lowest-order Taylor ex-
pansion of £kV k?+2 in the exponential and V'k2+2 in
the numerator at kK =0, and we have

BA(vt,t)zf%exp(ikv’t)‘/—l—z];

X [exp(iV2kt)—exp(—iV'2kt )] (11)

=(i /V2)rect[v'/(2V2)] (12)
for ¢t — o, where the rectangular function rect(y) is unity
if —1<y <1 and zero elsewhere. The decaying saddle
point contributions have been neglected in Egs. (11) and
(12). Physically, we notice that the group velocity from
the dispersion relation Eq. (9) is always in the ranges
v—v,<—V2 and v—v, >V2 for sg\n/(y)>0. Thus the
finite level of perturbation within —V'2 <v—v, <V'2 at
large ¢ is due to the nonlinear effect.

The above approximation breaks down around
v’=+V2 within a “boundary layer” of v’ which shrinks
as t— co. This is because the saddle point can then be so
close to the pole k =0 that the magnitude of the saddle
point contribution is very large in this parameter region
(although still decreasing for large 7). Incidentally, zero
group-velocity dispersion also corresponds to v’=Vv"2. In
order to find the solution for this “boundary layer,” we
need an approximation that is valid even when v’ ~V2.
This can be accomplished by keeping the second order
terms in the Taylor expansion of £kV'k2—2 in the ex-
ponential since the saddle point contribution for v’
around V2 is then automatically included. This results
in
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SA(vt,t)zfg&exp(ikv’t);{exp[iV—ikt+ik3t/(2V§)]—exp[~—i1/§kt—ik3t/(2\/§)]} (13)
27 V2k

=VL_{F[3'1/3x/§(x/§+u')tm]+F[3—1/3x/§(\/§—v')12/3]} , (14)

for t — «, where the function
F(a):f(dy/Zw)[sin(ay +y3/3)1/y
=1— [ "Aipdy=[* Aipdy—1,
and Ai(a) is the Airy function defined as
Ai(a)=fowcos(ay+y3/3)dy/1-r

[10]. Since F(a)~=1 for |a|>>1, it can be shown that
for a fixed v’ not very close to =V 2 this result is identical
with the previous derivation. But the result also gives the
boundary layer structure. By using |a|~1, it is easy to
see that the thickness of boundary layers about v’'=+Vv"2
decreases as 1/t%/3 in the normalized spatial coordinate
of v. This corresponds to a boundary layer of the order
of t!/3 in the spatial coordinate x. The structure of the
boundary layer is isomorphic with the front of a water
wave (or surface-gravity wave) [10].

Figure 1 shows the result for |8 4 (vt,1)|? from numeri-
cal integration of Eq. (10) and our simplified calculations
based on Egs. (14) and (12), which agree well even for the
moderately long time ¢t =15. Compared with the case of
a linear medium [10], this result shows that the develop-
ment of a localized perturbation will be saturated at a
certain level determined by the energy of the initial per-
turbation, instead of dispersing away. The perturbation
will radiate out, as it propagates with v,, with both
shocklike fronts moving out from the center with con-
stant speed V2, so the total perturbation energy increases
linearly with time. If v, < V2, the perturbation will not
vanish after a long time in the laboratory frame as ordi-
nary dispersive waves do.

We now turn our attention to the important case of the
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FIG. 1. The shape of the Green function for the modulation-
ally stable system plotted as |84 (vt,2)|? versus v'=v—v, at
t =15. The square curve is the approximate result from Eq.
(12). The other two curves are the exact result from Eq. (10)
(upper curve) and the approximate result from Eq. (14) (lower
curve).

[
modulationally unstable system with sgn(u) <0. In such
a case, we can prove that the pole £ =0 in Eq. (10) can-
not be a saddle point for any value of v; thus the saddle
points and the pole are always separated, and the contri-
bution to the integration at large ¢ is just the summation
of the pole contribution and the saddle point contribu-
tions. For the unstable portion of v, since the saddle
point contributions represent an exponential growth with
time, the pole contribution can be neglected. Actually,
there are two saddle points from kv’'+kV'k%?—2 in Eq.
(10) that give contributions growing exponentially with
time. Compared to most unstable systems in which only
one saddle point contribution has the largest growth rate,
here the growth rates of the two contributions are the
same while their phases are different. Thus, as will be de-
tailed in the following calculation, the amplitude of the
asymptotic pulse is oscillatory with an exponentially
growing envelope. This is characteristic of a modulation-
ally unstable system.

For the exponential kv'+kV'k?—2 in Eq. (10), the
saddle points in the complex k plane satisfy

di[kv'+kV'k2—2]=0. (15)

The saddle point with exponentially growing contribution
is determined to be

k(v)=—[(8+v2+v'Vv'2—16)/8]2 . (16)

Here we concern ourselves with |v’| <4 for the unstable
portion of the pulse. The value of the exponential
kv'+kV'k2—2 and its second order derivative at the
saddle point can be calculated to be

s()=k )3’ +Vv'2—16)/4 17

:(VE/S)[U'4+4OUl2_16_1)’(1)'2_16)3/2]1/2
(18)
and

p(v)=8k(v)[v' /(v —8—0v'Vv'2—16)
_(U'+\/U'2—16)/8] s (19)

respectively. The value of the factor V'k2—2/k in Eq.
(10) at the saddle point is

d(v)=—1'—Vv"?—16)/k(v) . (20)

In Eqgs. (18)—(20), k(v) is given by Eq. (16). Similar re-
sults can_be obtained for the other exponential
kv'—kV k?—2 in Eq. (10).

According to the method of steepest descendant, we
add up_the two saddle point contributions from
kv'tkV'k?—2. Detailed analysis shows that their con-
tributions are complex conjugates of each other so the
final result can be written as
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SA(Ut t)—(l/\/477-t )Re[ets(v)t/‘/

=(1/V/4mt Je "™ {Re[e! R /v —ip ]+i Im[e'Rd /v —ip ]}

for t — «, where by using Egs. (18)

—Im(s)=[4(20"%+4)32+32—40v"2—v"*]'/2/8 , (23)
Re(s)= —sgn(v')[4(20"2+4)32—32+40v"2+0v'*]1/2/8 ,
(24)

as are displayed in Fig. 2. Equation (22) means that the
envelope of the asymptotic pulse is determined by
exp{ —Im[s(v)]¢t} [1,9], while the frequency and phase of
the amplitude oscillation are determined by Re[s(v)]t,
p(v), and d(v). The most important information for the
instability is the envelope which gives the asymptotic
temporal growth rate —Im[s(v)] displayed in Fig. 2.
Thus the unstable portion of the pulse corresponds to
|v'| <4. By checking the asymptotic temporal growth
rate at v =0 [5-8], it is easily found that the instability is
convective or absolute for v, >4 or v, <4. This is in
agreement with previous results [1,9].

In order to find a simpler expression for the pulse
shape, we notice that the predominant portion of the
pulse is around v'=0 at large t. This allows us to take
Taylor expansions for both exponentials and coefficients
in Eq. (22) and keep only the lowest-order terms. Then
Eq. (22) becomes

1+i

8A(vt,t)~ —=
PV s

exp[(1—v'%2/8)t ]cos(v't) . (25)

-Im(s)

Re(s)
o
o

-5.0 " L " 1 L
-4.0 -2.0 0.0 2.0 4.0

/-
v=v: Vg

FIG. 2. The real and imaginary parts of the exponential fac-
tor s(v) in the saddle point integration. (a) —Im[s(v)] is the
asymptotic growth rate. The slope of the dashed curve corre-
sponds to maximum spatial growth rate for v, =5. (b) Re[s(v)]
is the phase of the oscillations in Fig. 3 below.

ip()]+i(1/Vaxrt YIm[e™™
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() /v —ip(v)] (21)

(22)

f

The same result can be obtained by a second-order Taylor
expansion of the exponentials +itkV'k?>—2 in Eq. (10)
around k= F1, which correspond to their respective
maxima. Figure 3 shows the asymptotic pulse shape plot-
ted as ¢ exp(—2t)|8 A (vt,t)]?, determined by numerical
integration of Eq. (10) and by our simplified Eq. (25).
They agree with each other well even for the moderately
long time ¢ = 10.

IV. SPATIAL AMPLIFICATION

Following the systematic approach of the impulse-
response analysis [5—8], we now study the spatial growth
rate for the convectively unstable case of sgn(u) <0 and
v, >4. This is accomplished by introducing a point
source oscillating at a frequency o, (i.e., zero spectral
linewidth), and finding the steady-state spatial solution
reached at large ¢ (after a transient time), whose existence
is guaranteed by the convective nature of the instability.
The amplification of a signal with arbitrary linewidth can
be studied in terms of spectrum decomposition. Thus
we assume S(t)=exp(—iwy)t in Eq. (4) or S(w)
=[i(w—wy)] ! in Eq. (7). In this analysis, we use the
spatial coordinate x instead of the normalized spatial
coordinate of v since we are concerned with the steady
state.

Following the standard approach [5-8], we move the
integration path of w below its real axis. Due to the ab-
sence of absolute instability, the k integration path can
always be deformed so that the solution at large ¢ is only
due to the pole of w at wy and can be expressed as

0.10 T T T . T

0.09 -
0.08 E
0.07 - R
0.06 - 4
0.05 + 4
0.04 + -
0.03 - R
0.02 - .
0.01 + B

0.00 + - -
2.5 -1.5 -0.5 0.5 1.5 2.5

/=
V=V Vg

teZISAMLY) at t=10

FIG. 3. The shape of the Green function for the modulation-
ally unstable system plotted as texp(—2¢)|84(vt,2)|? versus
v'=v—v, at t =10. The two curves are the exact result from
Eq. (10) (upper curve) and the approximate result from Eq. (25)
(lower curve).
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8A(x,t)2fL%exp(ikx)

kz(kz—Z)—(a)o—Ubk)z

for t— 0 (26)

where L is the Landau contour. (For a detailed discussion, see [6].) This steady-state solution can be reached for any
fixed spatial coordinate x after a transient time. Physically, the new frequency component of exp(iwgyt) is generated by

the four-wave mixing process.

The integration in Eq. (26) can be worked out for x >0 and x <O separately. For simplicity we only consider x >0
since the case x <0 is similar. Then the integration with k£ in Eq. (26) is just the residue summation from all the poles of
the integrand above the Landau contour. For large x, only the lowest pole at k, gives a dominant contribution, that is,

(wo—vgkg +k3—1)exp(—iwgt)+expliogt)

8 A(x,t)~exp[ikyx] —

where ky(w,) is a function of w, and satisfies
k§(k§—2)—(wy—v.k()*=0 . (28)

For amplification, ky(w,) should be below the real axis
while still above the Landau contour. This criterion is
equivalent to the requirement that the corresponding
solutions of Eq. (28) cross the real axis from above to
below when we attach an imaginary part to o, that goes
from some positive value to zero (for detailed discussion,
see [6]).

The solutions of Eq. (28) are of course functions of w.
A detailed study shows that for v, >4 there are two
separate regions for positive w,; namely (0,w,) and
(w,, ), that result in complex solutions of Eq. (28).
However, only the first region corresponds to
amplification. By applying the above criterion, it can be
shown that the second one corresponds to evanescent
waves. The same is true for negative wy due to symmetry.
As an example, Fig. 4 shows all four solution branches of
Eq. (28) for varying w, and v, =5, where we have used
the normalized frequency Qy=w,/v,, and chosen the at-
tached imaginary part to Qg to be 0.4, 0.1, and 0, while
its real part can be at some discrete values which are 0.1
apart in the range (—5,5). Thus only the portion of the
bow-shaped curve below the real axis in Fig. 4(d) has

4ko(k§—1)+2v,(wy—v ko)

for t — o (27)

-
amplification. This portion of k, corresponds to the
range of (—1.35,1.35), i.e., Q, =, /v,=1.35.

By solving Eq. (28), Fig. 5 shows the wave number
Re[ky(wg)] as Re[ky(wy)]—€y and the spatial growth
rate —Im[kq(w,)] as —v,Im[k((@y)] for v, <4 in the
amplification range of €, Figure 6 shows the
amplification range ),, the maximum growth rate as
vymax[ —Im(ky)], and corresponding  frequency
Q,, =, /v, for different v,. While the wave number
Re(k,) approaches (},, the quantities v,max[ —Im(kg)]
and (), decrease to approach 1, and the normalized
amplification frequency range (), increases to approach
\/5, as v, increases. It should be pointed out that
max[ —Im(k,)] for a given v, is equal to the slope of the
tangential line shown in Fig. 2(a) (where we have used
Vg =35 as an example) as can be generally proved [5-8].

The branch of the solution of Eq. (28) related to
amplification can be obtained directly by treating vg_2 as
a small parameter since we have assumed v, >4. By writ-
ing Eq. (28) in the form

(ko—Qo)=v, Xk —2k3) , (29)

it is easy to see that the zeroth-order solution is ky={Q,,.
The next order solution will be accurate to O(vg_l) and
can be obtained by the zeroth-order Taylor expansion of

FIG. 4. The four branches of the dispersion
relation satisfying Eq. (28) for v,=5 and a

4. varying parameter @,. (a) The values of the pa-
: rameter Qy=wo/v, are dotted on the three
horizontal lines at Im(Q,)=0.4 (first), 0.1
(second), and O (third) with separation of 0.1
between the dots. (b) The four branches of the
solution of Eq. (28) for the values of €, on the
first line in (a). (c) Same as (b) except for the
second line in (a). Note the part that crosses
the real axis. (d) Same as (b) except for the
third line in (a). Thus k, is on the bow-shaped

come across the real axis and corresponds to
Im(Qy Im (k)
05 @ .2
s L 15
0.3 i d
0.2 - -
~4 2 osf 2
- -1
-1.5
4 2 o0 2 & Re@y 2
Im (K
m (k) ©
2 . .
1.5 :
1 .
S . .
. — —= Re(K) :
4. 2 g 2 . -4 2.
-1 . .
-1.5

Re(k) curve below the real axis.
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Re(ky) Q
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FIG. 5. The spatial growth rate and corre-
sponding wave number for varying frequency
in the amplification range and for v, =4 (solid),
6 (dashed), and 8 (long dashed). The wave
number is plotted as Re(ky)—Q, versus
Qy=wy/vg in (a) and (b), and the spatial
growth rate is plotted as —v,Im(k,) versus Q,
in (c) and (d), where (a) and (c) are the exact re-
sults from Eq. (28) and (b) and (d) are the ap-
proximate results from Eq. (31).

02040608 1 1.21.4 o

the right-hand side of Eq. (29) at k,=Q,. After taking
the square root on both sides of the resulting equation,
we have

kolwg)=Qo—v, 0V Q2 —2 . (30)

Thus Q,=V?2, Q,=1, and vymax[—Im(ky)]=1 in
agreement with the results in Figs. 5 and 6 for v, >>1.

g
This result can also be obtained from another version of

the NSE used to study the boundary input problem, i.e.,
J

02040608 1 1.21.4 o

dya=—v, '9,a—i(B,/2)d%,a+iylal’a ,

where B,=2u/(v;)* and y =A/vg. The two versions are
equivalent only when v, =v, /\/a%Myl >>1.

The accuracy can be improved by considering the
second-order Taylor expansion of the right-hand side of
Eq. (29) at k3=, In fact, one can prove that the solu-
tion thus obtained is at least accurate to_O(vg_3) with
higher accuracy around Q,=0 and Q,=V2. The result-
ing second order algebraic equation for ky can be easily
solved to give

ko(ewg) — Qg -
[1—20,723Q3—1)]
ga
(@)
1.4
1.38 p
/
1.36} 7
I}
1.34}/
1.32
v
1858 70 12 14 16 18 °
Q
1.12
1.1
1.08
1.06

1.04
1.02
1

20,200 Q3— 1)—v, 'V Q3 —2+ 20, (— Q§+3032)

(31)

vgmax[- Im (ko)]

6 8 10 12 14 16 18

v

6 8 10

9

12 14 16 18

FIG. 6. The amplification frequency range plotted as Q,=w,/v, (a), the maximum spatial growth rate plotted as
vymax[ —Im(kq)] (b), and the corresponding frequency plotted as Q,, =w,, /v, (c) for varying v, (c). The solid lines are from numeri-
cal calculations based on Eq. (28) and the dashed lines are from the approximate analytical calculations based on Egs. (32), (34), and

(35).
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Equation (31) is quite accurate, as shown in Fig. 5.

The frequency range for the amplification can be easily
obtained from Eq. (31) by setting the term under the
square root to zero, and the solution is

Q,=V2(1—v;?) (32)

where we have Taylor expanded the result up to the
O(l)g_z) term.

According to Eq. (31), the maximum growth rate
max[—Im(k,)] and the corresponding frequency (2,, can
be obtained by studying the extremum of

—vg 100V Q3 —2+20, A —Q¢+303)
[1—2v, 2(305—1)]

:z—vg_l\/yz—l+2vg“2(5y3+4y2—3y—2) ,  (33)

where y =Q3—1 and Taylor expansion has been made up
to O(vg"z). The extremum of the argument under the
square root of the right-hand side of Eq. (33) can be easily
found by using ordinary perturbation with respect to

vg_z. After some straightforward algebra, we obtain
Q,~1+3v2, (34)
vgmax[—Im(ko)]':1+2vg_2 , (35)

where we have kept the expansions up to the O(v;z)
term.

Equations (32), (34), and (35) are good approximations
as long as v&f >>1. The comparison with the numerical
solution is displayed in Fig. 6.
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V. CONCLUSION

We reported the result of impulse-response analysis for
a nonlinear wave in a dispersion medium. The Green
function for a pulselike perturbation and the solution for
oscillatory perturbations were studied. For a modula-
tionally unstable system, the asymptotic pulse not only
grows but is also modulated, i.e., the perturbation pulse
consists of a modulation structure whose envelope grows
exponentially. The pulse shape and the condition for
convective and absolute instability were obtained analyti-
cally. Even for a modulationaly stable nonlinear disper-
sive system, the perturbation does not disperse away as it
does in a linear system. Instead, a certain level of pertur-
bation determined by the energy of the initial pulse
occurs in a widening region of space whose center moves
with the group velocity. In a sense, it is like a spreading
square pulse. For an oscillatory perturbation source, we
determined the frequency regions for amplification and
evanescence. The spatial growth rates for amplifying
waves were obtained. The results also showed that the
spatial NSE and temporal NSE are equivalent only for
v >>1.
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